How to prove Δx and Δp obey the Heisenberg uncertainty principle?, chemistry homework help.
The spread in an observable is ΔA =(A^2 – (a)^2)^1/2 where A is the expectation value for the operator A hat.
How do I evaluate knowing this Δx and Δp for the particle in a box to show it obeys Heisenbergs uncertainty principle?
Also, why is the expectation value P^2 not equal to p^2 and the same for the expectation value of X^2 not equal to x^2?
How to prove Δx and Δp obey the Heisenberg uncertainty principle?, chemistry homework help
.awasam-promo3 {
background-color: #F5F9FF;
color: #000000;
text-align: center;
padding: 20px;
border-radius: 10px;
}
.button {
background-color: #4CAF50;
border: none;
color: white;
padding: 10px 20px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 16px;
margin: 4px 2px;
cursor: pointer;
border-radius: 5px;
}
.button-whatsapp {
background-color: #41D07D;
border: none;
color: white;
padding: 10px 20px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 16px;
margin: 4px 2px;
cursor: pointer;
border-radius: 5px;
}
.awasam-alert {
color: red;
}
Needs help with similar assignment?
We are available 24×7 to deliver the best services and assignment ready within 6-8 hours? Order a custom-written, plagiarism-free paper
Get Answer Over WhatsApp
Order Paper Now