To help you better understand why the definition of Big-O is concerned only with

To help you better understand why the definition of Big-O is concerned only with the behavior of functions for large values of n, choose two functions with different growth rates in which the faster growing function is lower at small values of n, but eventually becomes larger. Write a short program that periodically compares the values of the two functions and illustrates the point at which the faster growing function overtakes the slower growing one. As an example, consider the following two functions:
f(n) = 500n2 + 15n + 1000
g(n) = 2n3
Shown below is a table of the values of both functions for small values of n.
n    f(n)    g(n)
10    51150    2000
20  201300    16000
30  451450    54000
40  801600  128000
50  1251750  250000
60  1801900  432000
70  2452050  686000
80  3202200  1024000
90  4052350  1458000
100  5002500  2000000
110  6052650  2662000
120  7202800  3456000
130  8452950  4394000
140  9803100  5488000
150 11253250  6750000
160 12803400  8192000
170 14453550  9826000
180 16203700 11664000
190 18053850 13718000
200 20004000 16000000
210 22054150 18522000
220 24204300 21296000
230 26454450 24334000
240 28804600 27648000
250 31254750 31250000
260 33804900 35152000
Once n reaches 260 g overtakes f.